Fast linear algebra is stable

نویسندگان

  • James Demmel
  • Ioana Dumitriu
  • Olga Holtz
چکیده

In [23] we showed that a large class of fast recursive matrix multiplication algorithms is stable in a normwise sense, and that in fact if multiplication of n-by-n matrices can be done by any algorithm in O(n) operations for any η > 0, then it can be done stably in O(n) operations for any η > 0. Here we extend this result to show that essentially all standard linear algebra operations, including LU decomposition, QR decomposition, linear equation solving, matrix inversion, solving least squares problems, (generalized) eigenvalue problems and the singular value decomposition can also be done stably (in a normwise sense) in O(n) operations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faster numerical algorithms via exception handling

An attractive paradigm for building fast numerical algorithms is the following: (1) try a fast but occasionally unstable algorithm, (2) test the accuracy of the computed answer, and (3) recompute the answer slowly and accurately in the unlikely event it is necessary. This is especially attractive on parallel machines where the fastest algorithms may be less stable than the best serial algorithm...

متن کامل

On the superstability of a special derivation

The aim of this paper is to show that under some mild conditions a functional equation of multiplicative $(alpha,beta)$-derivation is superstable on standard operator algebras. Furthermore, we prove that this generalized derivation can be a continuous and an inner $(alpha,beta)$-derivation.

متن کامل

Spectrum Preserving Linear Maps Between Banach Algebras

In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.

متن کامل

A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices

The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...

متن کامل

Construction of strict Lyapunov function for nonlinear parameterised perturbed systems

In this paper, global uniform exponential stability of perturbed dynamical systems is studied by using Lyapunov techniques. The system presents a perturbation term which is bounded by an integrable function with the assumption that the nominal system is globally uniformly exponentially stable. Some examples in dimensional two are given to illustrate the applicability of the main results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 108  شماره 

صفحات  -

تاریخ انتشار 2007